Les conducteurs ioniques $Na_x Y_x Zr_{1-x} S_2$

O. ABOU GHALOUN, P. CHEVALIER, L. TRICHET*, ET J. ROUXEL

Laboratoire de Chimie des Solides, associé au CNRS (L.A. 279) Université de Nantes, 2 rue de la Houssinière, F. 44072 Nantes Cédex, France

Received November 3, 1978, in revised form June 6, 1979

Results about new ionic conductors $Na_x Y_x Zr_{1-x}S_2$ are presented. The electronic conductivity normally induced by sodium intercalation layered chalcogenides has been suppressed by performing at the same time a substitution of zirconium by yttrium in the slabs of the host structure. Electrical measurements using the complex impedance technique lead to the activation energy of the ionic conduction. This energy was found to present a marked minimum around x = 0.50. A NMR study showed quadrupole coupling to prevail in relaxation process. Electrical field gradient is maximum for x = 0.50. The activation energy of the local motion remains practically constant throughout the composition range. The above results are compared to others obtained from compounds having the same structure.

а

Introduction

Les composés intercalaires $A_{\rm x}MS_2$ obtenus à partir des métaux alcalins (A =Li au Cs et $0 < x \le 1$) et des sulfures lamellaires des éléments de transition (M = Ti, Zr,Hf, V, Nb, Ta, Mo, W) présentent une bonne conductivité à la fois électronique et ionique. L'électron cédé par l'alcalin est en effet délocalisé dans la bande de conduction du réseau hôte où il détermine ou conforte une conductivité électronique. Dans le même temps l'ion A⁺ qui en résulte présente une bonne mobilité entre les feuillets [S-M-S] de la structure d'accueil. Cette double conductivité, associée à la réversibilité du processus d'insertion, explique le bon fonctionnement des chalcogénures lamellaires en tant que cathodes dans des générateurs électrochimiques. En contrepartie la contribution électronique interdit l'emploi des intercalaires comme conducteurs ioniques. L'obtention de conducteurs ioniques utilis-

substitution, en proportion équivalente, de l'élément de transition dans le feuillet MS_2 . Ce travail porte sur des phases résultant d'une substitution à l'yttrium dont le caractère fortement électropositif est de nature à favoriser l'élimination de la conductivité électronique. Pour la première fois également une comparaison entre énergies d'activation mesurées par impédances complexes (mobilité à longue distance) et par RMN (mobilité de site à site) a pu être faite. Dans les intercalaires usuels seules les études RMN sont possibles.

d'insertion-substitution

ables requiert deux conditions: partir d'un chalcogénure qui ne soit pas lui-même

conducteur et d'autre part éviter la contri-

bution électronique induite au cours du pro-

cessus d'insertion. La première proposition

conduit à privilégier ZrS₂ et HfS₂, semi

conducteurs à larges gaps, la seconde nous

 $Na_x In_x Zr_{1-x} S_2$ a constitué le premier exem-

ple (1). L'insertion s'accompagne d'une

dont

composés

série

la

amenés à préparer des

*Auteur à qui la correspondance doit être adressée.

Preparation et caracterisation structurale

Les échantillons $Na_x Y_x Zr_{1-x}S_2$ sont obtenus par chauffage à 850°C, en tubes scellés de silice, de mélanges soigneusement pesés de ZrS_2 et NaYS₂:

$$x \operatorname{NaYS}_2 + (1-x) \operatorname{ZrS}_2 \rightarrow \operatorname{Na}_x \operatorname{Y}_x \operatorname{Zr}_{1-x} \operatorname{S}_2.$$

Plusieurs périodes de chauffage de 4 jours, séparées par des broyages de la masse, sont réalisées à chaque fois. ZrS_2 est préparé selon les méthodes habituelles (1). NaYS₂ résulte de l'action à 800°C pendant 6 heures d'un courant de CS₂ entraîné par de l'azote, sur un mélange de Y₂S₃ et de Na₂CO₃ dans une nacelle d'alumine.

L'étude des diagrammes X permet de reconnaître un domaine homogène de composition pour x compris entre 0,30 et 1. Pour x < 0.30 on observe un domaine biphasé avec ZrS₂ ce qui exclut l'existence d'une autre phase dans ce système. Les paramètres a et c de la maille hexagonale évoluent de manière continue à partir des valeurs correspondant à $NaYS_2$ (Fig. 1). Pour chaque composition étudiée un affinement par moindres carrés a été effectué. La phase $Na_x Y_x Zr_{1-x} S_2$ est isotype de NaYS₂ et de la phase Na_xZrS₂ (0,64 $< x \le 1$). Le type structural est représenté sur la Fig. 2: c'est le modèle 3R la des intercalaires (2) où le sodium est en site octaédrique entre feuillets MS_2 . Dans ces feuillets le zirconium est

FIG. 1. Variation des paramètres a et c.

FIG. 2. Types structuraux d'après (1).

progressivement remplacé par l'yttrium et pour x = 1 on aboutit à NaYS₂ dont le type NaHF₂ représente le cas limite du modèle 3R la avec remplissage de tous les sites octaédriques destinés au sodium.

Quelques remarques peuvent être formulées:

—les paramètres a et c présentent en fonction de x une évolution inverse de celle qu'ils montrent dans un intercalaire vrai A_XMS_2 de même structure NaHF₂ (2). La différence ici est due à l'effet de la substitution dans le feuillet: les ions Y³⁺ plus gros (0,82 Å au lieu de 0,72 Å pour Zr⁴⁺) provoquent une expansion de a lorsque x croît. Cette expansion favorise corrélativement un tassement structural selon c.

-dans le système $Na_x In_x Zr_{1-x}S_2$ une phase "octaédrique" 3R a également été observée, mais son domaine d'existence est plus restreint: $0,65 < x \le 1$. Ceci est lié à l'ionicité plus grande des liaisons Y-S par rapport à In-S ce qui favorise le type octaédrique conformément au diagramme général ionicité-structure des intercalaires (3).

Le même systéme $Na_x In_x Zr_{1-x}S_2$ présente d'ailleurs deux autres phases, l'une 2H, l'autre 3R, où l'alcalin exerce à chaque fois la coordinence trigonale prismatique entre feuillets MS_2 . Ceci correspond encore à une ionicité plus faible des liaisons dans les feuillets MS_2 , situation qui rend possible l'apparition de modèles prismatiques.

Etudes par mesures d'impedances complexes

Un diagramme $Z \sin \varphi$, $Z \cos \varphi$ en fonction de la fréquence, et à diverses températures, permet de remonter à l'énergie d'activation associée à la conduction ionique des échantillons (4-6). L'étude en fréquence de l'impédance complexe d'un matériau mène en effet à chaque température à des points expérimentaux dont ceux qui correspondent aux fréquences les plus élevées se situent sur des arcs de cercle passant au voisinage de l'origine. L'extrapolation à fréquence nulle fournit la résistance du matériau.

Ces études, faites pour diverses valeurs de x, à des températures allant de 150 à 300° C, permettent de tracer à chaque fois les courbes de variation du logarithme du produit σT en fonction de l'inverse de la température absolue. Nous obtenons des droites caractérisant pour σT une variation de la forme $\sigma T = A e^{-\Delta E/kT}$ où ΔE est l'énergie d'activation liée au mécanisme de conduction. Nous avons rassemblé dans le Tableau I quelques valeurs de l'énergie d'activation d'échantillons $Na_x Y_x Zr_{1-x} S_2$ aux côtés de résultats concernant des phases

TABLEAU I

Composé	E (eV)	Type structural
$(NaY)_{0,40}Zr_{0,60}S_2$	0,47	3RIa
$(NaYZr)_{0.50}S_2$	0,41	3RIa
$(NaY)_{0.60}Zr_{0.40}S_2$	0,68	3RIa
$(NaY)_{0.70}Zr_{0.30}S_2$	1,7	3RIa
$(NaInZr)_{0.50}S_2, Ref. (1)^a$	0,28	2H
$(NaIn)_{0.80}Zr_{0.20}S_2, Ref. (1)^a$	0,33	3RIa
$(KIn)_{0,72}Zr_{0,28}O_2$, Ref. (9) ^{<i>a</i>}	0,74	2H

^{*a*} Après conversion en log σT .

 $Na_x In_x Zr_{1-x}S_2$ et $K_x In_x Zr_{1-x}O_2$. Aucune signification précise ne peut être accordée aux valeurs absolues des conductivités: les mesures sont en effet très dépendantes de la qualité du frittage des échantillons. Il apparaît clairement par contre une énergie d'activation supérieure pour les phases oxygénées et, si l'on compare entre elles les phases sulfurées, l'énergie d'activation pour une même composition est plus élevée dans le cas des dérivés substitués à l'yttrium. Dans le but de s'assurer que la conductivité mesurée était essentiellement ionique, des mesures complémentaires ont été faites en collaboration avec D. Ravaine du Laboratoire d'Electrochimie de Grenoble en utilisant des électrodes constituées d'amalgame de sodium. Les premiers essais ont montré que la conductivité électronique était négligeable.

Plus remarquable sans doute est l'observation de l'évolution de l'énergie d'activation en fonction de x, représentée Fig. 3. Un

FIG. 3. Evolution de l'énergie d'activation en fonction de x.

minimum très net est observé au voisinage de x = 0,47. De part et d'autre l'énergie d'activation augmente très rapidement. A x = 0.80 la mesure n'est même plus possible. Ceci signifie que la conduction ionique dans cette couche intercalée bidimensionnelle dépend très largement de l'existence de lacunes (valeurs de x > 0.50) mais à l'inverse lorsque la teneur en ions Na⁺ diminue (x < x0,50) la conduction décroît. Il y a ainsi un rapport optimum |Na⁺|/|□| correspondant à une valeur critique x_c , pour lequel l'énergie d'activation est minimale. Dans le cas présent x_{c} est voisin de 0,50. Cette valeur critique est difficile à interpréter car elle ne met pas en cause uniquement la disponibilité de sites vides susceptibles d'accueillir les ions Na⁺, mais aussi la valeur du puits de potentiel, qui évolue avec la teneur en yttrium, et la symétrie de gradient de champ dont l'étude RMN fait apparaître une distorsion progressive.

Etude RMN

Les mesures ont été faites à 20 MHz par une méthode pulsée sur un appareil Brüker SXP. Elles ont porté:

(1) sur la détermination de grandeurs statiques telles que: le déplacement de la raie de résonance (Knight Shift) dans le but d'établir la présence ou l'absence d'électrons de conduction au niveau du noyau de l'électron, la largeur et la forme de raie pour déterminer les couplages dipolaires et quadrupolaires.

(2) sur la mesure des variations des temps de relaxation spin-réseau en fonction de la température. Ceci a permis de déduire l'énergie d'activation du mouvement à courte distance. La raie de résonance du ²³Na a la même position que celle observée dans le chlorure de sodium. Ceci suggère une ionisation totale du sodium quelle que soit la teneur en métal alcalin.

Une étude de la forme de raie pour une même température et pour diverses valeurs de x montre que la largeur à mi-hauteur évolue et passe par un maximum pour x =0,50 (Fig. 4). Cette largeur est certainement d'origine quadrupolaire. En effet l'élargissement d'origine dipolaire produit par l'interaction entre spins identiques (Na-Na) ou entre spins différents (Na-Zr⁹¹), calculé à partir de l'expression du second moment, conduit à une valeur de l'ordre du gauss, inférieure à la valeur observée. Cette hypothèse se trouve confirmée par le fait que la durée du pulse tp nécessaire pour obtenir le signal maximum est la moitié de celle déterminée dans le cas du chlorure de sodium: ceci est caractéristique d'un spin fictif $\frac{1}{2}(7)$ et implique que nous n'observons que la transition $(\frac{1}{2}, -\frac{1}{2})$ donc des couplages quadrupolaires importants qui sont responsables (au second ordre) de l'élargissement de la raie.

L'évolution des paramètres de la maille étant monotone dans le domaine d'existence de la phase, la variation de l'élargissement quadrupolaire ne peut être interprétée uniquement par la déformation du site occupé par le sodium. Cet élargissement pourrait résulter de la dissymétrie du gradient de champ électrique entraînée par la substitution zirconium-yttrium. L'effet maximum observé pour x = 0,50 correspond à la dissymétrie maximum. De part et d'autre de cette composition on tend vers les

FIG. 4. Evolution de la largeur de la raie (RMN) en fonction de x.

structures isotypes NaZrS₂ ou NaYS₂, plus symétriques.

La constante de couplage quadrupolaire $e^2 qQ/h$ calculée à partir de l'effet au second ordre est trouvée égale à 0,73 MHz pour x = 0,50, et à 0,50 MHz pour x = 0,80.

Temps de relaxation spin-Réseau

Ces temps sont mesurés à l'aide de la séquence d'impulsions $\Pi - \tau - \Pi/2$. La Fig. 5 montre la variation du logarithme de l'intensité du signal en fonction de τ à diverses températures pour une composition x =0,70. Le retour à l'équilibre thermique n'obéit pas à une simple loi exponentielle. La courbe peut être décrite, a priori, soit par deux temps de relaxation T_1 et T'_1 caractérisant les deux parties linéaires que l'on peut dégager de la loi de variation, soit par T_{1e} le temps au bout duquel la magnétisation décroît dans un rapport e si la forme de la courbe ne varie pas avec la température pour une composition donnée, ce qui est bien le cas ici. Mais cette forme de courbe variant d'une composition à l'autre nous avons préféré utiliser les temps T_1 et T'_1 pour pouvoir comparer les temps de relaxation pour diverses compositions à la même température. Ces deux valeurs T_1 et T'_1 ne sont mesurables que pour les compositions intermédiaires. Pour x petit, T'_1 est difficilement mesurable car le signal est très faible après la cassure. De même T_1 est

FIG. 5. Variation du log de l'intensité du signal en fonction de τ .

masqué par T'_1 pour les fortes valeurs de x. L'existence de deux temps de relaxation n'implique pas qu'ils caractérisent deux phénomènes différents, d'ailleurs nous verrons que leur variation en fonction de la température est identique. La loi de retour à l'équilibre doit plutôt être envisagée comme la somme de deux fonctions exponentielles dans lesquelles le temps de relaxation interavec des coefficients vient différents. Walstedt et coll. (8) étudiant la relaxation quadrupolaire du sodium dans l'alumine β admettent qu'il y a deux processus de transition entre les quatre niveaux du noyau de sodium, provoqués par les fluctuations de couplage quadrupolaire. Ces deux processus correspondent à $\Delta m = 1$ et $\Delta m = 2$ et sont caractérisés par des probabilités de transition W_1 et W_2 . La variation du signal en fonction du temps est alors de la forme:

$$S(t) = S_0 + S_1 e^{-2W_1 t} + S_2 e^{-2W_2 t}.$$

Les intensités relatives de S_1 et S_2 dépendent du couplage quadrupolaire et des conditions expérimentales. Une telle loi interprète parfaitement nos résultats expérimentaux, le temps de relaxation T_1 étant relié comme on le sait à la probabilité de transition par $T_1 = 1/2W1$. Dans notre cas, l'interprétation est compliquée par le fait que W_1 et W_2 sont certainement anisotropes et que nous travaillons sur poudre. Le Tableau II indique les valeurs de T_1 et T'_1 pour diverses compositions et pour la même température de 28°C. Il permet de constater que T_1 , ou T'_1 , augmente de deux ordres de grandeur quand x varie de 0,35 à 1 (si l'on admet que le rapport T'_1/T_1 reste sensiblement constant pour toutes les valeurs de x ce qui est bien le cas pour les compositions où ce rapport est mesurable). La Fig. 6 montre que le logarithme de T_1 varie de façon sensiblement linéaire en fonction de x. Cette loi est moins bien vérifiée pour les temps de relaxation les plus longs; il est possible qu'alors ces temps deviennent plus sensibles aux défauts de réseau. Ce type de loi implique

TABLEAU II VALEURS DES TEMPS DE RELAXATION À 28°C POUR DIVERSES VALEURS DE x

x	T_1 (sec)	T'_1 (sec)
0,55	0,021	
0,40	0,030	
0,45	0,052	
0,50	0,077	
0,55	0,11	
0,60	0,085	0,3
0,70	0,6	2,2
0,80		2,4
0,90		12
1		10

que les fluctuations de champ électrique vues par le sodium, sont de plus en plus faibles quand x augmente, elles sont très sensibles au rapport $|Na^+|/|\Box|$.

Energies d'activation du mouvement local

La Fig. 7 montre les variations des logarithmes de T_1^{-1} et $T_1^{\prime -1}$ en fonction de l'inverse de la température pour la composition x = 0,7, composition pour laquelle il a été possible de mesurer les deux temps de

FIG. 6. Variation de log T_1 en fonction de x.

FIG. 7. Variation de log T_1^{-1} et log $T_1^{'-1}$ en fonction de la température pour x = 0,7.

relaxation dans un large domaine de température; les deux pentes sont bien identiques et l'une ou l'autre de ces variations peut être utilisée pour la mesure de l'énergie d'activation du mouvement. Le même résultat serait bien sûr obtenu avec les variations du log T_{1e}^{-1} .

En admettant pour la fonction de corrélation une loi exponentielle en e^{-t/τ_c} , où τ_c représente le temps de corrélation, τ_c varie en fonction de la température suivant l'expression:

$$\tau_c = \tau_0 \, e^{+u/kT}.$$

u est l'énergie d'activation pour le mouvement local des ions. Le Tableau III indique les valeurs de l'énergie d'activation obtenues pour diverses compositions. Ces valeurs restent comprises dans l'intervalle $0,44 \pm$ 0,03 eV.

TABLEAU III

VALEURS DE L'ENERGIE D'ACTIVATION OBTENUES PAR RMN pour diverses compositions

x	u(eV)
0,35	0,47
0,40	0,44
0,45	0,42
0,50	0,44
0,60	0,41
0,70	0,46
0,80	0,44

Conclusion

Le caractère fortement électropositif de l'yttrium stabilise une phase Na_xY_xZr_{1-x}S₂ à coordinence octaédrique pour le sodium sur une très large plage de compositions (0,30 < $x \le 1$). Ceci permet une étude de l'évolution de l'énergie d'activation en fonction du taux d'occupation des sites octaédriques: les mesures faites par impédances complexes montrent une très forte variation avec un minimum pour x = 0,50. Une comparaison avec les oxydes lamellaires (9) et aussi avec la phase homologue Na_xIn_xZr_{1-x}S₂ (0,65 < $x \le 1$) fait apparaître clairement que l'énergie d'activation est d'autant plus élevée que les édifices sont plus ioniques.

Les mesures RMN renseignent sur le mouvement local des ions. Les énergies d'activation obtenues sont beaucoup plus faibles, sauf pour x = 0,50, le cas le plus favorable pour une diffusion à grande distance. Ces énergies d'activation sont très sensibles à l'ionicité de la structure car celleci définit les puits de potentiel: nous trouvons 0,41 eV pour x = 0,50 à comparer à 0,28 eV pour Na_{0,50}In_{0,50}Zr_{0,50}S₂. En fonction de x dans une série Na_x $M_xZr_{1-x}S_2$ nous devrions observer une évolution de l'énergie d'activation de site à site d'autant plus marquée que les liaisons M-S et Zr-S auront une ionicité différente. L'absence de variation dans $Na_r Y_r Zr_{1-r} S_2$ peut s'expliquer par une faible différence d'ionicité (0,34 pour Y-S et 0.26 pour Zr-S dans l'échelle de Pauling) dont l'effet est compensé par ailleurs par la variation de volume $(r_Y3 + =$ 0,89 Å), $r_{zr}4 + = 0,72$ Å).

Bibliographie

- 1. L. TRICHET ET J. ROUXEL, Mater. Res. Bul. 12, 345 (1977).
- 2. A. LE BLANC, M. DANOT, L. TRICHET, ET J. ROUXEL, *Mater. Res. Bul.* 9, 191 (1974).
- 3. J. ROUXEL, J. Solid. State Chem. 17, 223 (1976).
- 4. J. F. BAUERLE, J. Phys. Chem. Solids 30, 2657 (1969).
- 5. J. M. REAU, J. CLAVERIE, G. CAMPET, C. DEPORTES, D. RAVAINE, J. L. SOUQUET, ET A. HAMMON, *C.R. Acad. Sci.* **280** C, 325 (1975).
- D. RAVAINE ET J. L. SOUQUET, C.R. Acad. Sci. 277 C, 489 (1973).
- A. ABRAGAM, "The Principles of Nuclear Magnetism," p. 37, Oxford Univ. Press (1961).
- R. E. WALSTEDT, R. DUPREE, J. P. REMECKA, ET A. RODRIQUEZ, *Phys. Rev.* B 15, 3442 (1977).
- C. DELMAS, C. FOUASSIER, J. M. REAU, ET P. HAGENMULLER, Mater. Res. Bull. 11, 1081 (1976).